手机浏览器扫描二维码访问
348章
灵感,总是来的这么措不及防!
程诺嘴角微微一勾,将书页翻回原本那一页。
既然chebyshev(切比雪夫)给出的bertrand假设的证明过程如此复杂,那么,自己就挑战一下,看看是否能够用更加简便的数学语言证明bertrand假设吧。
顺便,来验证一下,这一年的深入钻研,自己的能力究竟到了何种地步。
bertrand假设的简单证明方法。
光是这个论文题目,就足以被称得上是一区水平的论文。当然,前提是程诺真的能够探索出来那条简单的解法。
就如程诺之前所假设过的。数学界每一个猜想或者假设的证明过程都是由走到终点的过程,有的路线曲折,有的路线笔直。
而或许,切比雪夫发现的是那条比较曲折的路线,而程诺,则需要在前人的基础上,开辟出一条更加简捷的道路。
但这却比单独证明bertrand假设要简单。
毕竟是站在巨人的肩膀上看待问题,有了切比雪夫这位“开荒者”提出的证明方案,程诺或多或少的也能从中汲取到什么,并进行独到的理解。
想到就做!
程诺不是那么犹豫不决的人。反正时间充裕,容得程诺在发现“此路不通”后,重新寻找另一个论文方向。
想要提出更加简便的方案,首先要把前人提出的证明思路吃透。
他没有火急火燎的直接开始自己的钻研,而是低下头,从头到尾的阅读书中关bertrand假设的那十几页内容。
两个小时后,程诺合上书。
闭着眼回味了几秒,他从书包中掏出一摞空白的草稿纸,拿起桌面上的黑色碳素笔,聚精会神的开始了自己的推演:
想要证明bertrand假设,就必须证明几个辅助命题。
引理一:【引理1:设n为一自然数,p为一素数,则能整除n!的p的最高幂次为:s=Σi≥1floor(npi)(式中floor(x)为不大于x的最大整数)】
这里,需要将从1到n的所有(n个)自然数排列在一条直线上,在每个数字上叠放一列si个记号,显然记号的总数是s。
关系式s=Σ1≤i≤nsi表示的是先计算各列的记号数(即si)再求和,由此得到的关系,便是引理1。
引理二:【设n为自然数,p为素数,则Πp≤np≈ap;lt;4n】
用数学归纳法。n=1和n=2时引理显然成立。假设引理对n≈ap;lt;n成立(n≈ap;gt;2),我们来证明n=n的情形。
如果n为偶数,则Πp≤np=Πp≤n-1p,引理显然成立。
如果n为奇数,设n=2+1(≥1)。注意到所有+1≈ap;lt;p≤2+1的素数都是组合数(2+1)!!(+1)!的因子,另一方面组合数(2+1)!!(+1)!在二项式展开(1+1)2+1中出现两次,因而(2+1)!!(+1)!≤(1+1)2+12=4
如此,便能……
程诺思路顺畅,几乎没费多大功夫,便用自己的方法将这两个辅助命题证明出来。
当然,这不过是才走完第一步而已。
按照切比雪夫的思路,后面还需要通过这两个定理引入到bertrand假设的证明步骤中去。
切比雪夫用的方法是硬凑,没错,就是硬凑!
通过公式间的不断转换,将bertrand假设的成立的某一个,或者某几个充要条件,转换为引理一或者引理二的形式,在进行化简整合求解。
当然,程诺肯定不能这么做。
因为用这种求证方案的话,别说是程诺,就算是让希尔伯特来,恐怕证明步骤也不会比切比雪夫简单多少。因此,必须要转换思路。
魔鬼的惩罚 人在木叶,慌得一批 美漫之阿斯加德的战神 快穿之宿主她总翻车 神话:在青蛇中修炼遮天法 王者立海大 我公子扶苏,请始皇退位! 身为学长的我被六傲娇少女捉弄 史上第一帅神 洪荒二郎传 超神术士 海贼:无限极品抽奖 天生就会跑 不朽神王 我!万古最强天骄 他的小祖宗爱吃糖 我有一座英雄联盟学院 谁还没个后台 漫威世界的御主 盛唐风月
关于幻化之人的奇妙冒险这个新坑的定义是非正统的游戏小说连游戏都搭不上。呃,还是搭得上的主角的能力就是将万物游戏化比如每个人都有等级啥的。...
暂无简介...
关于网游之斩皇创世纪手拿斩皇之刃!征服整个东亚区!带天下第一之名!回国一战天下群雄!吾名斩皇!谁能接我一刀!...
扶弟魔苟琪一朝穿成古代小女娃,谁承想这小女娃的父亲也是个扶弟魔。祖母为了让三叔的儿子读书居然想让父亲将她这个小娃许配给傻子,这怎么可能!分家!必须分家!可分家过后日子艰难,不过没关系,她有一双自带解析功能的眼睛!只要所见之物,眼睛都能通过不同颜色的雾气来提醒苟琪,并且准确解析出物体的功效。不管是水果还是药材,是疾病还是伤痛,甚至的毒物,她的眼睛都能准确的解析并提出有效的解决方案。靠着这双眼睛,她卖药材,做吃食,甚至还能看病救人发家致富那可是指日可待了!如果您喜欢发家致富从三岁半开始,别忘记分享给朋友...
关于豪门养子他是人人都可以欺负的豪门养子,过着连狗都不如的生活。但没人知道,他身后背负着万亿的遗产。一朝一鸣惊人,他这个豪门养子,是你们谁都高攀不起的!...