手机浏览器扫描二维码访问
对于普通人来说,比起黎曼猜想、费马大定理、哥德巴赫猜想等世界知名的数学难题,“纳维-斯托克斯方程”就显得颇为陌生,多数人甚至不知道这到底是什么玩意。
但对于从小就喜欢数学和理科的秦克来说,“纳维-斯托克斯方程”却是如雷贯耳的存在!
“纳维-斯托克斯方程”,即(okeseation),简称n-s方程,是数学界与物理界都非常知名的一个非线性偏微分方程组,被业界称为“流体运动的牛顿第二定律”,主要描述了粘性不可压缩流体(如液体和空气等)流动的基本力学规律。
这个运动方程自1827年由克劳德·路易·纳维(cude-louisnavier)根据以流体动量守恒的理论提出后,泊松、圣维南和乔治·斯托克斯分别进行了深入研究,并最终在1945年推导出来,形成一系列复杂至极的方程组。
n-s方程也被誉为世上最有用的方程组之一,因为它建立了流体的粒子动量的改变率(力)和作用在液体内部的压力的变化和耗散粘滞力(类似于摩擦力、产生于分子的相互作用)以及引力之间的关联。
正是因为它建立了这样的关联,使得它可以描述出液体任意给定区域的力的动态平衡,是流体流动建模的核心,在流体力学中有十分重要的意义。
以此为基础,它既可以应用于模拟气候变化,洋流运向,甚至可以模拟出厄尔尼诺这样的全球性气象系统,也可以用于研究水管里的水流运动乃至于血液循环等流体运动。
它也可应用到具体与日常生活相关的设计上,比如机翼的流体升力研究、车辆外壳的流体力学设计、空气污染效应的流动扩散分析等等。
看到这里,是不是觉得它的用途大得惊人?
问题是,n-s方程虽然意义重大也很实用,但它是一个非线性偏微分方程,求解非常困难和复杂,在求解思路或技术没有进一步发展和突破前,只有在某些十分简单的特例流动问题上才能求得其精确解。
目前,全世界的数学家依然未能证明在三维坐标、特定的初始条件下,n-s方程式是否有符合光滑性的解,也尚未证明若这样的解存在时,其动能有其上下界。
上面这句话以通俗易懂的方式来解释,那就是现在整个世界的数学界,都在寻找n-s方程的通解,以证明该方程的解总是存在,以便通过这组方程准确地描述出任何流体、在任何起始条件下,未来任一时间点的情况。
但对于n-s方程这样用数学理论阐明都困难的一组方程,想去证明这个方程组的解总是存在,又是何其的困难!
所以经过两百年来无数的数学家投入无数的精力,也不过只有大约一百多个特解被解出来,唯一真正算得上是有点儿特殊成果的,是数学家让·勒雷在1934年时证明的,n-s方程的弱解存在,可以在平均值上满足n-s方程,但也仅此而已,无法在每一点上满足。
此外夏裔数学家陶宗师也曾写过一篇《fiiblowupforanaveradthree-dinsionalokeseation》的论文,将n-s方程全局正则性问题的超临界状态屏障形式化,让n-s方程的研究又有了新的推进,但距离解决“n-s方程的存在性与光滑性的问题”还很遥远。
为此,“三维空间中的n-s方程组光滑解的存在性问题”,被米国克雷数学研究所设定为七个千禧年大奖难题之一。
可以说,谁能将这个问题研究清楚,并找出和证明这个通解,那将会催化出无数新的数学工具、数学方法、物理理论,引领着数学界和物理界实现迈步式的大发展!
到了那时,基本上物理的诺贝尔奖、马塞尔·格罗斯曼奖,数学的菲尔兹奖、克拉福德奖、沃尔夫数学奖等等大奖都可以拿到手软了,更别说由之带来巨大的社会经济效益、对人类文明的推动作用!
正是深知这个纳维-斯托克斯方程的难度与意义,当秦克看到系统给予的奖励居然是《非线性偏微分方程‘纳维-斯托克斯方程’的探究与详解(前篇)》时,脑海里只有一个念头——无论如何,都必须把这个奖励拿到手!
虽然不知道这个“探究与详解”,是否就能证明“三维空间中的n-s方程组光滑解的存在性问题”并求出方程组的通解,但凭着秦克对这个系统那丰富得不可思议的知识库的了解,这份被评为s级的知识必然是惊世骇俗的!
只要能将之理解透彻,哪怕只是“前篇”,也足够让秦克名扬世界的数学界了,到时别说是清木、北燕大学了,向来以傲慢著称的普林斯顿大学怕都来跪求他去读书,哦不,应该是任教!
不过,秦克很快就冷静下来了,就算自己获得了这份知识,也得能看得懂啊!
那起码得有极深厚的大学物理基础,以及大学数学基础,甚至更高层次的研究生、博士知识才行,不然知识给他了,他看不懂也是白瞎。
哪怕将来看懂了、研究透彻了,想发表出来,也必须有足够的名气,有超级数学天才的光环,这样你发表的论文才有可能受到数学界的重视,并不会引人猜疑、拖去切片解剖。
为此,秦克必须继续自己的数学竞赛之旅,io的金牌甚至是冠军,是必不可少的,物理方面的竞赛也得杀入世界赛事中,而数学方面的专业论文,也得开始着手了。
从这方面来看,系统一直通过任务在引导着他走正确的道路。
起码先发表一些学术水平的数学论文,积累名气是很有必要的第一步。
以后有机会,物理的学术论文也得搞起来。
竞赛与学术论文,两者相辅相成,才能奠定他未来顶尖数学家、顶尖物理学家的地位与形象,到时再发表“纳维-斯托克斯方程”的论文就顺理成章了。
仰望完星空与未来,秦克重新把目光投注回到这个任务本身——发表第一篇学术论文,而且得是在国家级学术期刊发表一篇“数学分析”方面的专业学术论文。
不过学术论文啊……
我连作文都只写过八百字的,让我写学术论文?
秦克陷入了沉思,然后决定向前排的施存远教授求教。毕竟这可是正儿八经名牌大学的研究生导师,虽然远州大学与清北是没法子比,但在华海省也是最好的大学了,位列985、211之列。
施存远在数学方面的学术水平是毋庸质疑的。
想到这里,秦克轻轻敲了敲前排的座位:“施老师,方便吗?我有个问题想请教您。”
帝辇之下 东国岛津的野望 我的艺人天天想退出娱乐圈 盘龙之紫金传说 重生从一次不成功的分手开始 穿书之炮灰女配是条鱼 将君赋 灾厄之冠 全民时代:兵种丧尸,感染全世界 神话修仙:种出百万天赋点 东京氪命流怪异游戏 从斩妖除魔开始的东京生活 万欲妙体 诸天之始于武道 诡异:我的器官变异了 霸业王权 我在修仙界开创网络时代 静水微澜 我真不是文娱教父啊 宋医生的野玫瑰
穿越斗罗大陆,枪武魂。看主角如何把武魂进化成北欧神话中的奥丁神枪,冈格尼尔。没有外挂就自己给自己创造外挂。尽显极北之地风采。PS不舔唐三。不拜大师。游离于团队之外。第一女主水冰儿。如果您喜欢斗罗之我不要当枪兵,别忘记分享给朋友...
罗南刚醒来,就身处影视世界,自己是谁?做挑战任务,可以恢复记忆?身边是双人滑女伴刘菲,可他受伤了,刘菲要配给邵北笙?那怎么行!挑战邵北笙,挑战滑冰极限,快点儿恢复记忆,罗南拼了!第一个世界陪你逐风飞翔除了竞技挑战,似乎还可以挑战别的?第二个世界北京爱情故事要杨紫曦给自己唱征服?如果您喜欢影视世界去挑战,别忘记分享给朋友...
关于绣女锦途种田文规律不是斗斗极品,虐虐渣,发家致富就可以了吗?为什么自己小小年纪被人莫名其妙订了亲?既然对方大张旗鼓策划退亲,自己就在暗地里推波助澜好了,事情眼见就要成功了突然被叫停算怎么回事?高富帅就有权随便反悔吗?那谁来保护灰姑娘的权益。某人笑答是我,是我,还是我。...
四年前,她被渣妹设计,意外怀孕。四年后,她携子归来。一个矜贵霸道的男人突然闯进她的世界,说,孩子的爸爸是谁?一个缩小版的他突然跳出来,哪来的野男人,敢抢小爷女神!萧夜凌,女人,偷我种子,知道什么下场吗?啊?作为补偿,做我老婆,一辈子!婚后,夫妻虐渣顺带虐狗。面对上门求复合的前任,林绾绾抱住男人的手臂,对渣男露齿一笑,比起女朋友,我更喜欢你喊我二婶!如果您喜欢总裁老公太凶猛,别忘记分享给朋友...
重生花样年华,玩转市井豪门,携手逆袭人生,共揽一世风云!如果您喜欢八零军嫂有点苏,别忘记分享给朋友...
自从村子里出了个杨小宝,乡村生活开始丰富了起来。比如帮马寡妇家里打打旱井。帮美女丽丽赶跑追求她的流氓。帮隔壁雪梅婶婶治愈多年不育的顽疾。帮村里修通了通往镇上的大路。乡亲们,姐妹们,我杨小宝来了!...